ON A CONSTRUCTIVE DEFINITION OF THE RESTRICTED DENJOY INTEGRAL

BY DONALD W. SOLOMON

1. **Introduction.** Let I = [a, b] and F be a function of the closed subintervals of I. One says that F has Burkill integral $\int_{I} F$ over the closed interval $J \subseteq I$ if

$$\int_{I} F = \lim_{P \in \mathscr{D}: |P| \to 0} \sum_{I' \in P} F(I'),$$

where \mathscr{P} is the set of partitions of J and |P| is the norm of P. The Burkill integral has been employed in a more general setting [1] to give a descriptive definition of the restricted Denjoy integral of point functions f. In this paper we show how this integral can be used to give a constructive definition of the restricted Denjoy integral and compare the classical construction with ours. We adopt the convention that I and J, with or without subscripts or superscripts, always denote a closed interval.

Before we begin our discussion, let us recall the classical constructive definition ([2], 255-259) of the restricted Denjoy integral.

Let T be a real-valued function whose domain, dom T, is a set of ordered pairs $\{(f, J)\}$, where f is a real-valued point function defined on J. The set

$$\{f: (f, J) \in \text{dom } T\}$$

will be denoted by $dom_{I} T$.

T is called an integral if

- (i) $f \in \text{dom}_J T$ implies $f \in \text{dom}_{J'} T$ for all closed subintervals $J' \subseteq J$, and T(f, J') is an additive, continuous function of J';
 - (ii) if $f \in \text{dom}_{I_1} T$, i = 1, 2, where I_1 and I_2 are abutting, then $f \in \text{dom}_{I_1 \cup I_2} T$;
 - (iii) if $f \equiv 0$ on I, then $f \in \text{dom}_I T$ and T(f, I) = 0.

One says that f is T-integrable on I if $(f, I) \in \text{dom } T$.

Two integrals T_1 and T_2 are *compatible* if $T_1(f, I') = T_2(f, I')$ whenever they both exist. We say $T_1 \subseteq T_2$ if T_1 and T_2 are compatible and dom $T_1 \subseteq$ dom T_2 .

Given a function f defined on $I' \subseteq I$ and an integral T, one says that a point $x \in I'$ is a T-singular point of f in I' if there exists $\{I_n\}$, with $I_n \subseteq I'$, $|I_n| \to 0$, $x \in I_n$, such that $(f, I_n) \notin \text{dom } T$.

If $\mathscr S$ is the set of T-singular points in I, clearly $\mathscr S$ is closed and $(f, I') \in \text{dom } T$ for all $I' \subseteq I$ such that $I' \cap \mathscr S = \varnothing$.

Received by the editors October 4, 1966.

Let T be an integral. One defines $dom_I T^C$ by the following conditions:

- (c_1) $\mathcal{S} \cap I$ is finite or void;
- (c₂) there exists a continuous, additive F such that F(I') = T(f, I') whenever $(f, I') \in \text{dom } T, I' \subseteq I$.

Define $T^{c}(f, I) = F(I)$. It is clear that T^{c} is an integral.

Let $E \subseteq I$. Let $f_E = f\chi_E$, where χ_E is the characteristic function of E. One says f is T-integrable on E if f_E is T-integrable on I.

One defines $dom_I T^H$ by the following conditions:

 (h_1) f is T-integrable on \mathcal{S} and on each of the intervals I_k contiguous to $\mathcal{S} \cup \{a, b\}$.

 $(h_2) \sum O(T; f; I_k) < \infty$, where $O(T; f; J) = \sup_{J' \subseteq J} |T(f, J')|$.

Define $T^H(f, I) = T(f, \mathcal{S}) + \sum T(f, I_k)$. Clearly T^H is also an integral.

Let $\{T^{\alpha}\}$ be a sequence of integrals, in general transfinite, such that $T^{\alpha} \subseteq T^{\beta}$ whenever $\alpha < \beta$. Define dom $\sum_{\beta < \alpha} T^{\beta} = \bigcup_{\beta < \alpha} \text{dom } T^{\beta}$ and if $(f, I') \in \text{dom } \sum_{\beta < \alpha} T^{\beta}$, define $(\sum_{\beta < \alpha} T^{\beta})(f, I') = T^{\beta_0}(f, I')$, where β_0 is the least ordinal such that $(f, I') \in \text{dom } T^{\beta_0}$.

Write $T^{CH} = (T^C)^H$. We define a transfinite sequence $\{D^{\alpha}\}$ of integrals as follows: let \mathscr{L} be the Lebesgue integral,

$$D^0 = \mathscr{L},$$
 $D^{lpha} = \left(\sum_{eta \leq lpha} D^{eta}\right)^{CH}$

if $\alpha > 0$. Let Ω be the first uncountable ordinal. Then it is well known ([2], 258) that if D_* is the restricted Denjoy integral,

$$D_* = \sum_{\alpha \in \Omega} D^{\alpha}.$$

- 2. A constructive definition using the Burkill integral. We define $dom_I T^{H^{\bullet}}$ by the following conditions:
- (h₁*) there exists a closed set $W \subseteq I$ such that f is T-integrable on W and on each $I' \subseteq I$ with $I' \cap W = \emptyset$;
 - (h2) if we define

$$\psi(I') = T(f, I')$$
 if $I' \cap W = \emptyset$,
= 0 if $I' \cap W \neq \emptyset$,

then $\int_I \psi$ exists and $\int \psi$ is continuous (note that if $\int_I F$ exists, then $\int_{I'} F$ exists for all $I' \subseteq I$ and $\int_{I'} F$ is additive).

Define $T^{H^*}(f, I) = T(f_W, I) + \int_I \psi$. We note that T^{H^*} is an integral. For suppose that $f \in \text{dom}_J T^{H^*}$. Let $J' \subseteq J$. If $J' \cap W = \emptyset$, then $f \in \text{dom}_{J'} T$ so that, taking W' = J' in the definition of $\text{dom}_{J'} T^{H^*}$, we see that $f \in \text{dom}_{J'} T^{H^*}$. If $J' \cap W \neq \emptyset$, then since $f_W \in \text{dom}_J T$ and T is an integral, $f_W \in \text{dom}_{J'} T$. Now, since $\int_J \psi$ exists, so does $\int_{J'} \psi$ ([1], p. 70). Recall that continuity of $\int \psi$ is assumed in the definition

of $\operatorname{dom}_J T^{H^\bullet}$. Therefore, in either case $f \in \operatorname{dom}_{J'} T^{H^\bullet}$. Since T is an integral, $T(f_W, J')$ is an additive, continuous function of the $J' \subseteq J$; it is known ([1], p. 70) that $\int \psi$ is additive. Therefore $T^{H^\bullet}(f, J')$ is an additive, continuous function of the $J' \subseteq J$, and condition (i) is satisfied. Now suppose $f \in \operatorname{dom}_{I_i} T^{H^\bullet}$, i = 1, 2, where I_1 and I_2 are abutting. With no loss in generality we may assume I_1 is to the left of I_2 . Choose $W_i \subseteq I_i$, i = 1, 2, closed sets satisfying the requirements of the definition of $f \in \operatorname{dom}_{I_i} T^{H^\bullet}$, and let ψ_i be the functions corresponding to T^{H^\bullet} , f and W_i , i = 1, 2, in this definition. Set $a_1 = \sup W_1$, $b_1 = \inf W_2$. If $a_1 = b_1$, choose

$$W = W_1 \cup W_2$$
.

Then W is closed and, since T is an integral, by condition (ii), $f_W \in \text{dom}_{I_1 \cup I_2} T$. Let $\varepsilon > 0$ and choose $\eta_i = \eta_i(\varepsilon) > 0$, i = 1, 2, so that if P_i is a partition of I_i , i = 1, 2, with $|P_i| < \eta_i$, then $|\sum_{l' \in P_i} \psi_i(l') - \int_{I_i} \psi_i| < \varepsilon/8$, and also so that if $\{J_1, \ldots, J_p\}$ is any finite sequence of nonoverlapping subintervals of I_1 with Max $|J_k| < \eta_i$, then $\sum_{1}^{p} |\psi_i(J_k) - \int_{J_k} \psi_i| < \varepsilon/8$ (see [1], p. 70). Also, since $\int \psi_i$ is additive and continuous on I_k , i = 1, 2, we may choose η , $0 < \eta < \min(\eta_1, \eta_2)$, so that $J \subseteq I_i$, $|J| < \eta$ imply that $|\int_{I} \psi_i| < \varepsilon/8$. Now let P be any partition of $I_1 \cup I_2$ with $|P| < \eta$. Then

$$\left|\sum_{I'\in P}\psi(I')-\left(\int_{I_1}\psi_1+\int_{I_2}\psi_2\right)\right|<\varepsilon.$$

It therefore follows that $\int_{I_1 \cup I_2} \psi = \int_{I_1} \psi_1 + \int_{I_2} \psi_2$. It is immediate that $\int \psi$ is continuous on $I_1 \cup I_2$. If $a_1 < b_1$, choose $W = W_1 \cup W_2 \cup [a_1, b_1]$. A similar argument shows that, again, condition (ii) is satisfied. Finally, if $f \equiv 0$ on I, then since T is an integral, $f \in \text{dom}_I T$ and T(f, I) = 0. Choosing W = I, we see that $f \in \text{dom}_I T^{H^*}$ and $T^{H^*}(f, I) = 0$. Therefore T^{H^*} is an integral. By a known result ([1], 90), if $T \subseteq D_*$, then $T^{H^*} \subseteq D_*$.

Romanovski ([1], 91) has defined the following sequence $\{K_{\alpha}\}$ of classes of D_{*} -integrable functions defined on I. Put $f \in K_{0}$ if f is Lebesgue integrable on I. Let $\alpha > 0$. Then we put $f \in K_{\alpha}$ if one of the following four conditions is satisfied:

- (1) there is a partition P such that f is in a class K_{β} , with $\beta < \alpha$, on each member of P;
- (2) f can be extended to a function which belongs to a class K_{β} , with $\beta < \alpha$, on some $I' \supseteq I$;
 - (3) f belongs to a class K_{β} , with $\beta < \alpha$, on each closed sub-interval of $I^0 = (a, b)$;
- (4) there is a closed set W such that f_W is Lebesgue integrable on I, and such that, on each $I' \subseteq I$ with $I' \cap W = \emptyset$, f belongs to a class K_β , with $\beta < \alpha$; in addition, if

$$\psi(I') = (D_*) \int_{I'} f \, dx \quad \text{if } I' \cap W = \varnothing,$$

$$= 0 \qquad \qquad \text{if } I' \cap W \neq \varnothing,$$

then $\int_I \psi$ exists and $\int \psi$ is continuous. It is known ([1], 91) that if f is D_* -integrable, then f belongs to some class K_α .

We define a transfinite sequence $\{D_{*}^{\alpha}\}$ of integrals as follows:

$$D_*^0 = \mathcal{L},$$

$$D_*^{\alpha} = \left(\sum_{\beta \leq \alpha} D_*^{\beta}\right)^{H^*}$$

if $\alpha > 0$.

THEOREM 1. $K_{\alpha} \subseteq \text{dom}_{I} D_{*}^{\alpha+1}$.

Proof. Clearly $\operatorname{dom}_I D_*^0 = K_0$. Suppose the theorem is true for all $\beta < \alpha$, for some $\alpha > 0$ and that $f \in K_\alpha$. If condition (1) of the definition of K_α is satisfied, then there is a partition P of I such that $f \in \operatorname{dom}_{I'} D_*^{\beta+1}$ for all $I' \in P$, where $\beta < \alpha$. By condition (ii) for an integral, $f \in \operatorname{dom}_I D_*^{\beta+1}$. Since $\beta + 1 < \alpha + 1$, $f \in \operatorname{dom}_I D_*^{\alpha+1}$. If condition (2) of the definition of K_α is satisfied, then there exists $I' \supseteq I$ such that $f \in K_\beta$ on I', $\beta < \alpha$. But then by the induction hypothesis, $f \in \operatorname{dom}_{I'} D_*^{\beta+1}$ and by condition (i) for integrals, $f \in \operatorname{dom}_I D_*^{\beta+1}$. Since $\beta + 1 < \alpha + 1$, again $f \in \operatorname{dom}_I D_*^{\alpha+1}$. Now suppose condition (4) of the definition of K_α is satisfied. Then there is a closed set $W \subseteq I$ such that $f_W \in \operatorname{dom}_I \mathscr{L}$, and such that, on each $I' \subseteq I$ with $I' \cap W = \emptyset$, $f \in \operatorname{dom}_{I'} D_*^{\beta+1}$, where $\beta < \alpha$; in addition, $\int_I \psi$ exists and $\int \psi$ is continuous. It follows that $f \in \operatorname{dom}_I D_*^{\alpha+1}$.

We finally show that if condition (3) of the definition is satisfied, then f is $D_*^{\alpha+1}$ -integrable. Now $f \in \text{dom}_{I'}$ D_*^{β} , with $\beta < \alpha+1$, for all $I' \subseteq (a, b)$. Let

$$F=(D_*)\int f\,dx.$$

Then F is continuous on I. In (h_1^*) and (h_2^*) choose $T = D_*^{\alpha}$. Note that F(I') = T(f, I') for all $I' \subseteq I^0$. Let $W = \{a, b\}$ and $\varepsilon > 0$. Choose $\delta > 0$ such that $I' \subseteq I$, $|I - I'| < \delta$ imply $|F(I) - F(I')| < \varepsilon$. Let P be any partition of I with $|P| < \delta/2$. Then

$$\left|\sum_{I'\in P}\psi(I')-F(I)\right|=\left|\sum_{I'\in P'}F(I')-F(I)\right|<\varepsilon,$$

where P' is the set of those members of P which contain neither a nor b. It follows that $\int_I \psi = F(I)$. Clearly $\int \psi$ is continuous. Therefore

$$K_{\alpha} \subseteq \text{dom } D_{*}^{\alpha+1}$$
.

THEOREM 2. $D_* = \sum_{\alpha < \Omega} D_*^{\alpha}$.

Proof. Let f be D_* -integrable on I. Define f=0 outside of I. Let S^α denote the set of D_*^α -singular points of f in I. Then $\{S^\alpha\}$ is decreasing and, thus, stationary (i.e., there is an $\alpha_0 < \Omega$ such that $S^\alpha = S^{\alpha_0}$ for all $\alpha > \alpha_0$; see, e.g., [2], 258). However, $f \in K_\beta$ for some β and, therefore, $f \in \text{dom}_I D_*^{\beta+1}$. Thus $S^{\beta+1} = \emptyset$, which implies $S^{\alpha_0} = \emptyset$ and $f \in \text{dom}_I D_*^{\alpha_0}$. We have observed above that $T \subseteq D_*$ implies $T^{H^\bullet} \subseteq D_*$. To show that $D_* \supseteq \sum_{\alpha < \Omega} D_*^{\beta}$ it is easy to see that if $D_*^{\beta} \subseteq D_*$ for all $\beta < \alpha$, then $\sum_{\beta < \alpha} D_*^{\beta} \subseteq D_*$, and that therefore $(\sum_{\beta < \alpha} D_*^{\beta})^{H^\bullet} \subseteq D_*$. Since $D_*^0 = \mathscr{L} \subseteq D_*$, we have the desired containment relation by applying transfinite induction.

3. Comparison of our construction with the classical construction. In the following theorem we restrict our attention to those integrals T which have the property that $f \in \text{dom}_I T$ whenever $I \cap \{f \neq 0\}$ is finite.

THEOREM 3. $T^C \subseteq T^{H^{\bullet}}$.

Proof. Let f be T^c -integrable on I. Let $\mathscr S$ be the set of T-singular points in I and $\{I_1, \ldots, I_k\}$ be the set of intervals contiguous to $\mathscr S \cup \{a, b\} = E$. Let $F(I') = T^c(f, I')$ for all $I' \subseteq I$. Let $\varepsilon > 0$. Choose $\delta > 0$ such that for each i, $I' \subseteq I_i$ and $|I_i - I'| < \delta$ imply $|F(I_i) - F(I')| < \varepsilon/k$. Let $S_I = \{J_1, \ldots, J_m\}$ be any partition of I with $|S_I| < \delta/2$. Define

$$\psi(I') = F(I')$$
 if $I' \cap E = \emptyset$,
= 0 if $I' \cap E \neq \emptyset$,

for all $I' \subseteq I$. If $S \subseteq S_I$ is the subset of S_I consisting of those J_i such that $J_i \cap E = \emptyset$, we see that, since F is additive,

$$\left|\sum_{i=1}^m \psi(J_i) - F(I)\right| = \left|\sum_{J_i \in S} \psi(J_i) - \sum_{I_j \in S} F(I_j)\right| < \varepsilon.$$

It follows that $\int_{I} \psi = F(I)$.

We shall show below that the containment guaranteed by Theorem 3 is proper in general, i.e., there are T^{H^*} -integrable functions which are not T^c -integrable.

We note that (h_1^*) and (h_2^*) do not require that f be T-integrable on the intervals I_j contiguous to W. Since $\int_I \psi$ exists, $\int \psi$ is continuous, and T(f, I') is an additive function of the closed subintervals of I_j^0 for all j, it follows that $\int_{I'} \psi = T(f, I')$ for all such I', and therefore f is T^c -integrable on I_j for all j. Moreover,

$$\int_{I_f} \psi = \lim_{|I_f - I'| \to 0} T(f, I').$$

The following theorem will immediately establish the inclusion relationships between T^H , T^{H^*} , and T^{CH} .

THEOREM 4. Suppose $E \subseteq I$ is closed. Let $\{I_k\}$ be the sequence of intervals contiguous to $E \cup \{a, b\}$. Consider the following two conditions:

- (1) for every k, $f \in \text{dom}_{I'} T$ for all $I' \subseteq I_k^0$ and $f \in \text{dom}_{I_k} T^c$; moreover, $\sum O(T^c; f; I_k) < \infty$;
 - (2) f is T-integrable on all $I' \subseteq I$ such that $I' \cap E = \emptyset$; moreover, if

$$\psi(I') = T(f, I') \quad \text{if } I' \cap E = \emptyset,$$

= 0 \quad \text{if } I' \cap E \neq \omega,

then $\int_I \psi$ exists and $\int \psi$ is continuous. Then (1) and (2) are equivalent.

COROLLARY 5. $T^H \subseteq T^{H^{\bullet}}$.

COROLLARY 6. $T^{H^{\bullet}} \subseteq T^{CH}$.

These corollaries follow from a comparison of the conditions in the definitions of T^H , $T^{H^{\bullet}}$, and T^{CH} with conditions (1) and (2) of Theorem 4.

Proof of Theorem 4. We show first that (1) implies (2). Let $\varepsilon > 0$. Choose $N = N(\varepsilon)$ such that

$$\sum_{N+1}^{\infty} O(T^C; f; I_k) < \varepsilon/3.$$

Let $I_k = [a_k, b_k]$ for all k. Consider I_j with $j \le N$. By continuity of $T^C(f, I')$ there is a $\delta_j = \delta_j(\epsilon) > 0$ such that for $I' \subseteq I_j$, $|T^C(f, I_j) - T^C(f, I')| < \epsilon/6N$ whenever $|I_j - I'| < \delta_j$. In particular, then, if $J' = [a_j, b']$ and $J'' = [a'', b_j]$ are contained in J_j , and if $b' - a_j < \delta_j$ and $b_j - a'' < \delta_j$, then

$$|T^{C}(f,J')|+|T^{C}(f,J'')|<\varepsilon/3N.$$

Note, also, that since $T^c(f, I)$ is additive, if $J' \subseteq I_f$ and $\{J'_1, \ldots, J'_p\}$ is a partition of J', then $\sum T^c(f, J'_i) = T^c(f, J'_i)$.

Now choose $\delta = \min_{j=1,...,N} \delta_j$. Suppose $S = \{J_1, \ldots, J_p\}$ is a partition of I with $|S| < \delta$. The only members J_i of S for which it is possible that $\psi(J_i) \neq 0$ are those for which $J_i \cap E = \emptyset$. Consider I_k with $k \leq N$. Let $\{J_1^k, \ldots, J_{n(k)}^k\}$ be those J_i which are contained in I_k , such that $J_m^k \cap E = \emptyset$. Then by the above discussion we see that

$$\left|\sum_{m=1}^{n(k)} \psi(J_m^k) - T^C(f, I_k)\right| < \varepsilon/3N.$$

For k > N, clearly $\left| \sum_{m=1}^{n(k)} \psi(J_m^k) \right| \le O(T^c; f; I_k)$. Thus,

$$\begin{split} \left| \sum_{k=1}^{p} \psi(J_{k}) - \sum_{k=1}^{\infty} T^{C}(f, I_{k}) \right| \\ &= \left| \sum_{k=1}^{\infty} \sum_{m=1}^{n(k)} \psi(J_{m}^{k}) - \sum_{k=1}^{N} T^{C}(f, I_{k}) - \sum_{k=N+1}^{\infty} T^{C}(f, I_{k}) \right| \\ &\leq \left| \sum_{k=1}^{N} \left[\sum_{m=1}^{n(k)} \psi(J_{m}^{k}) - T^{C}(f, I_{k}) \right] \right| + \sum_{k=N+1}^{\infty} \left| \sum_{m=1}^{n(k)} \psi(J_{m}^{k}) \right| + \sum_{k=N+1}^{\infty} \left| T^{C}(f, I_{k}) \right| \\ &< N\varepsilon/3N + 2 \sum_{N+1}^{\infty} O(T^{C}; f; I_{k}) < \varepsilon. \end{split}$$

Thus $\int_I \psi$ exists and $\int_I \psi = \sum_1^\infty T^C(f, I_k)$. The continuity of $\int \psi$ is clear.

We now show that (2) implies (1). Let $\delta = \delta(1) > 0$ be such that

$$\left|\sum_{I'\in S_I}\psi(I')-\int_I\psi\right|<1$$

whenever S_I is a partition of I with $|S_I| < \delta$, and also such that

$$\left|\sum_{I'\in S}\psi(I')-\sum_{I'\in S}\int_{I'}\psi\right|<1$$

whenever S is a finite family of nonoverlapping subintervals of I with $\sup_{I' \in S} |I'| < \delta$ (see [1], 70).

Choose $N=N(\delta)$ such that $\sum_{N+1}^{\infty} |I_k| < \delta/2$. We shall divide $\{I_k\}_{N+1}^{\infty}$ into two classes, \mathscr{I}^+ and \mathscr{I}^- , as follows: put I_k in \mathscr{I}^+ if there exists $\{I_j^k\}$, with $I_j^k \subseteq I_k$, such that $T^c(f, I_j^k) \to O(T^c; f; I_k)$ and put I_k in \mathscr{I}^- otherwise. Write $\mathscr{I}^+ = \{I_{n_i}\} = \{J_i\}$. Choose J_i' with $J_i' \subseteq J_i^0$, such that $O(T^c; f; J_i) - T^c(f, J_i') < 1/2^i$. We shall show that $\sum O(T^c; f; J_i) < \infty$. A similar argument yields the same inequality for the sum of the oscillations over the members of \mathscr{I}^- . The choice of J_i' induces a partition of J_i , $\{J_i', J_i'', J_i'''\}$. Append to the family $\{J_i\}$ the family $\{I_1, \ldots, I_n\}$. For each $k=1,\ldots,N$, choose a partition $\{I_1^k,\ldots,I_{n(k)}^k\}$ (enumerated from left to right) of I_k such that $|I_j^k| < \delta$ for all j and such that

$$\left|T^{c}(f, I_{k}) - \sum_{j=1}^{n(k)-1} T^{c}(f, I_{j}^{k})\right| < 1/2N.$$

This can be done since $T^c(f, I)$ is additive and continuous on I_k for all k. For any positive integer p, consider

$$H = I - \left[\left(\bigcup_1^N I_i \right) \cup \left(\bigcup_1^p J_i \right) \right] \cdot$$

If H is nonvoid, it consists of a finite number of intervals. We shall now form a partition S of I. Put $\{J'_i, J''_i, J''_i\}_{i=1}^p \cup \{I^k_1, \ldots, I^k_{n(k)}\}_{k=1}^N$ into S. Suppose I' = [a', b'] and I'' = [a'', b''] are two of these intervals with b' < a'' such that none of the above intervals intersects (b', a''). Then, since the sum of the lengths of the contiguous intervals contained in H is $< \delta/2$, it follows that we can partition (b', a'') by a sequence of intervals all of whose end-points are in E, and all of which have length $< \delta/2$. We put this partition into S. We do this for all pairs I' and I'' satisfying the above conditions. We thereby obtain a partition S of I such that $|S| < \delta$. Then

$$\left|\int_I \psi - \sum_{I' \in S} \psi(I')\right| < 1.$$

But

$$\sum_{I' \in S} \psi(I') = \sum_{j=1}^{N} \sum_{k=2}^{n(j)-1} T(f, I_k^j) + \sum_{i=1}^{p} T(f, J_i').$$

Thus

$$\begin{split} & \sum_{i=1}^{p} T(f, J_{j}') \leq \left| \sum_{j=1}^{N} \sum_{k=2}^{n(j)-1} T(f, I_{k}^{j}) \right| + 1 + \left| \int_{I} \psi \right| \\ & \leq 1 + \left| \int_{I} \psi \right| + N/2N + \sum_{1}^{N} |T^{c}(f, I_{k})| < 2 + \left| \int_{I} \psi \right| + \sum_{1}^{N} |T^{c}(f, I_{k})|. \end{split}$$

Since $O(T^c; f; J_i) - T(f, J'_i) < 1/2^i$ for all i,

$$\sum_{i=1}^{p} O(T^{c}; f; J_{i}) \leq \sum_{i=1}^{p} 1/2^{i} + 2 + \left| \int_{I} \psi \right| + \sum_{i=1}^{N} |T^{c}(f, I_{k})|$$

$$< 3 + \left| \int_{I} \psi \right| + \sum_{i=1}^{N} |T^{c}(f, I_{k})|.$$

Since $3+|\int_I \psi|+\sum_1^N |T^C(f,I_k)|$ is an absolute finite constant and p was arbitrary, $\sum_1^\infty O(T^C;f;J_1)<\infty$. As we noted above, a similar argument can be used to establish the result for \mathscr{I}^- . Thus (2) implies (1).

The following example illustrates the fact that

$$T^{H} \not\subseteq T^{H^*}$$
 and $T^{C} \not\subseteq T^{H^*}$.

Let

$${I_n} = \left\{ \left[\frac{1}{n+1}, \frac{1}{n} \right] \right\} n = 1, 2, \ldots$$

Define

$$f(x) = x^{2} \sin \frac{1}{x^{2}} \quad \text{if } 0 < x \le \frac{1}{2},$$
$$= (\frac{1}{2} \sin 4)(1-x) \quad \text{if } \frac{1}{2} \le x \le 1.$$

Extend f by the formula

$$f(x+n) = f(x)$$

for all integers n. Define

$$f_n(x) = \frac{1}{2^{n+1}} f(n(n+1)x) \quad \text{if } x \in I_n,$$

$$= 0 \quad \text{if } x \notin I_n.$$

and

$$F(x) = \sum_{1}^{\infty} f_n(x)$$

for all $x \in I$. F(x) is clearly continuous on I and differentiable a.e. Let g(x) = F'(x). Let $E = \{0\} \cup \{1/n\}, n = 2, 3, \ldots$. Clearly g is \mathcal{L}^{C} -integrable on I_n for all n. By Theorem 4, to show g is $\mathcal{L}^{H^{\bullet}}$ -integrable on I we need only show that $\sum O(F; I_k) < \infty$. Since $O(F; I_k) < 1/2^k$, this is immediate. Thus g is $\mathcal{L}^{H^{\bullet}}$ -integrable. However, since E is the set of \mathcal{L} -singular points of g, and since g is not \mathcal{L} -integrable on I_n for any n, it follows that g is not \mathcal{L}^{H} -integrable. It is clear that g is not \mathcal{L}^{C} -integrable.

Finally we shall show that $T^{H^*} \not\subseteq T^{CH}$. Let E be the Cantor set. Let $\{I_n\} = \{[a_n, b_n]\}$ be the sequence of intervals contiguous to E. Let f(x) be as in the previous example and

$$F_n(x) = \frac{1}{2^{n+1}} f\left(\frac{2^{n+1}(x-a_n)}{|I_n|}\right) \text{ if } x \in I_n,$$

= 0 otherwise,

 $n=1, 2, \ldots$ Define

$$F(x) = \sum F_n(x).$$

Clearly g(x) = F'(x) exists a.e. Moreover, each point of E is an \mathcal{L}^{C} -singular point of g, and no other point is singular. In addition, $O(F; I_n) < 1/2^n$. Thus $\sum O(F; I_n) < \infty$, implying that g is \mathcal{L}^{CH} -integrable. However, I_n contains $2^{n+1} + 1$ \mathcal{L} -singular points, namely $\{a_n + j(|I_n|/2^{n+1})\}$ $j = 0, 1, \ldots, 2^{n+1}$. In addition,

$$O\left(F; \left[a_n + j \frac{|I_n|}{2^{n+1}}, a_n + (j+1) \frac{|I_n|}{2^{n+1}}\right]\right) = \frac{1}{2^{n+1}} O(f; [0, 1])$$

for all j and n. Then, if $H = E \cup [\bigcup_{n=1}^{\infty} \bigcup_{j=0}^{2^{n+1}} \{a_n + j(|I_n|/2^{n+1})\}]$, we note that H is closed and that $\sum O(F; J_k) = \infty$, where $\{J_k\}$ is the sequence of intervals contiguous to H. Moreover, if $P \subseteq I$ is a closed set such that g is \mathscr{L} -integrable on P and on all $I' \subseteq I$ with $I' \cap P = \varnothing$, then $\sum O(F; I'_j) = \infty$, where $\{I'_j\}$ is the sequence of intervals contiguous to P. For, let

$$I_{nj} = [a_n + j(|I_n|/2^{n+1}), a_n + (j+1)(|I_n|/2^{n+1})],$$

 $j=0, 1, \ldots, 2^{n+1}-1$, and write $a_{nj}=a_n+j(|I_n|/2^{n+1})$. Let c_{nj} be the midpoint of I_{nj} . Note that F is monotone increasing on $[c_{nj}, a_{n,j+1}]$ and that g is positive on $[c_{nj}, a_{n,j+1}]$. Let $\{I_{nj}^k\}$ be the sequence of intervals contiguous to $P \cup \{c_{nj}, a_{n,j+1}\}$ in $[c_{nj}, a_{n,j+1}]$. Then either

$$\int_{P \cap [c_{nj}, a_{n,j+1}]} g \ dx \ge \frac{1}{8} |\sin 4|$$

or

$$\sum_{k} O(F; I_{nj}^{k}) \geq \frac{1}{8} |\sin 4|.$$

If

$$\int_{P\cap[c_{nj},a_{n,j+1}]}g\ dx \ge \frac{1}{8}\left|\sin 4\right|$$

for infinitely many pairs n, j, then $\int_P |g| dx = \infty$ contradicting the assumption that g is \mathscr{L} -integrable on P. Thus, assuming that g is \mathscr{L} -integrable on P,

$$\sum_{k} O(F; I_{nj}^k) \ge |\sin 4|/8$$

for infinitely many pairs n, j, implying $\sum O(F; I'_j) = \infty$. Thus g is not $\mathcal{L}^{H^{\bullet}}$ -integrable although it is \mathcal{L}^{CH} -integrable.

REFERENCES

- 1. P. Romanovski, *Intégrale de Denjoy dans les espaces abstraits*, Mat. Sb. **9(51)** (1941), 67-120.
 - 2. S. Saks, Theory of the integral, Hafner, New York, 1937.

University of Wisconsin, Milwaukee, Wisconsin